The rightmost cup.
The rightmost cup has a half chance of holding the coin, and the other cups have a quarter chance.
Pretend that Os represent cups, and Q represents the cup with the coin.
The game starts like this:
OOQ
Then your friend switches the rightmost cup with another, giving two possibilities, with equal chance:
OQO
QOO
Your friend then moves the cups again, but doesn't touch the rightmost cup. The only switch possible is with the leftmost cup and the middle cup. This gives two possibilities with equal chance:
QOO
OQO
Lastly, your friend switches the rightmost cup with another cup. If the first possibility shown above was true, there would be two possibilities, with equal chance:
OOQ
QOO
If the second possibility shown above (In the second switch) was true, there would be two possibilities with equal chance:
OOQ
OQO
^ I kinda got lost around here. (the purple text)
This means there are four possibilities altogether, with equal chance:
OOQ
QOO
OOQ
OQO
This means each possibility equals to a quarter chance, and because there are two possibilities with the rightmost cup having the coin, there is a half chance that the coin is there.
This means there are four possibilities altogether, with equal chance:
OOQ
QOO
OOQ
OQO
This means each possibility equals to a quarter chance, and because there are two possibilities with the rightmost cup having the coin, there is a half chance that the coin is there.
No comments:
Post a Comment